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Haralampos Tsaknakis, Dimitri Kazakos, and P. Papantoni-Kazakos
University of Connecticut, Storrs, Connecticut 06268

and
University of Virginia, Charlottesville, Virginia 22901

Abstract

Asymptotic linear prediction and interpolation, for statistically contaminated

vector stationary processes is considered. Both prediction and interpolation are

then formalized as stochastic games with saddle point solutions. The existence of

unique solutions on convex and closed classes of vector stationary processes is

shown. Then, those solutions are found and analyzed, for two specific classes of

vector stationary processes.
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1. Introduction

The prediction and interpolation problems for stationary processes have received

coui~igr.ie attention for a number of years. The bulk of the work concentrates

around scalar stationary processes and the parametric model. The assumption there

is that the measure of the stationary process is well known. The initial significant

results on prediction and interpolation for the parametric model were given by

Kolmogorov [2] and Wiener [I). Most of the to date results on the same model can

be found in Hannan [12]. There, both scalar and vector stationary processes are

considered.

Strictly speaking, the term prediction refers to the extraction of a datum

from the process, when a number of past process data have been observed noiselessly.

The term interpolation refers to the same extraction, when past as well as future

noiseless process data are available. The two terms are extended sometimes to

include noisy observation data. Some results on those extended problems, and for

the parametric model, can be found in [4] and [6]. We point out here that the

majority of studies on the extended problems consider asymptotic and linear predic-

tion and interpolation operations.

The last few years considerable attention has been given to the robust extended

prediction problem. Little attention has been given to the robust nonextended inter-

polation problem. The robust model is nonparametric, and the assumption is that the

measure that generates the stationary process is not well known. The existing

work on robust extended prediction and interpolation concentrates around scalar

stationary processes, linear asymptotic prediction and interpolation operations,

and noisy observation data. Representative results here include robust Wiener

and Kalman filtering for scalar stationary processes, and can be found in 13],

(51, (71, [10], and [11]. Related work on time series outliers can be found in

[8]. The work in [9] considers the robust nonextended prediction problem, for
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linearly contaminated scalar stationary processes. The robust solution is found

there in the class of asymptotic linear prediction operations. In [13], a game

theoretic formulation of the robust extended prediction problem is presented.

There, statistical contamination on the measure of the processes is assumed, and

it is concluded thaL linear prediction operations may not be robust unless pre-

ceeded by appropriate nonlinear transformations. In [141, some performance bounds

on the robust extended prediction and interpolation problems are given.

In the present paper, we consider the robust nonextended prediction and inter-

polation problems for vector stationary processes. Vector processes have not been

treated in the robust literature, and they present some interesting peculiarities.

In particular, we consider prediction and interpolation in the absence of noise.

We assume that the vector process is a member of a convex and closed class of sta-

tionary vector processes. We adopt asymptotic and linear prediction and interpola-

tion operations. To maintain consistency with the results in [13], we assume that

a nonlinear stationary operation has preceeded the linear prediction and interpola-

tion operations. As exhibited in [13], an appropriate nonlinear stationary operation

maps the convex and closed class of vector stationary processes onto another convex

and closed class of such processes. We formulate the prediction and interpolation

problems as stochastic games with saddle point solutions. We find these solutions

explicitly, for two convex and closed classes of vector stationary processes. One

of the classes represents linear contamination of a. nominal vector process. The

other class includes vector processes with fixed energy on prespecified frequency

quantiles.

The organization of the paper is as follows. In section 2, we formulate the

prediction and interpolation games and we prove the existence of unique solutions.

In section 3, we analyze the above games for the class representing linear contamina-

tion of a nominal vector process. In section 4, we analyze the prediction and inter-

polation games for the class of vector processes with fixed energy on prespecified

frequency quantiles. In section 5, we present some conclusions.
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2. Preliminaries

We consider the prediction and interpolation problems for stationary vector

processes. We assume that the statistical structure of the vector process is

incompletely known. We model this incomplete knowledge by a convex and closed

family F of stationary vector processes. In the prediction problem, we adopt

the class S of one-step, asymptotic linear predictors. In the interpolationP

problem, we adopt the class Si of linear interpolators that operate on the infinite

past and the infinite future data sequences from the vector stationary process. We

select the mean square error as the payoff function and we formalize a saddle point

game on FxS and FxSi respectively. We call the corresponding solutions of the

gamerobust. We should point out here that our solutions may not satisfy the pro-

perties of qualitative robustness. Indeed, as exhibited in [131, linear operations

on a stationary process may not satisfy the sufficient conditions for qualitative

robustness. These sufficient conditions will be satisfied, however, if an appropriate

nonlinear operation preceeds the linear predictor or interpolator [13]. Thus, in

this paper, we will assume that the class F of vector stationary processes is, in

general, induced by an appropriate stationary nonlinear operation on the original

class F of such processes. We will first formalize the games on FxS and FxS foro pi

an arbitrary convex and closed set F. Then, we will consider some specific F

choices.

Let F be some convex and closed family of discrete-time, n-dimensional,

complex-valued, vector stationary processes. Let p denote the measure of some

process in F, and let F V(w) denote the spectral distribution matrix of the process

V in F. The spectral distribution matrix F () is defined on [-ir,1], it has

Hermitian nonnegative increments F (Wl)-F(w 2) ; wI j2 it is continuous from

the right, and it satisfies the equation F (-w) = 0. Furthermore, F (w) defines

a finite matrix measure on the Borel field B7 of the measurable space [-w,fl, in
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the sense that F U([-n,i]) I = H (TO7I < -, under any matrix norm I Through-

out this paper, we will assume that the above finite matrix measures are absolutely

continuous with respect to the Lebesque measure on [-ii], for all p in F. Then, for

Ad
any , in F, the spectral density matrix f () = - F () exists, and it is, in general,

-il &l.i -1V

a Hermitian nonnegative definite matrix whose elements are Lebesque integrable func-

tions on the measurable space ([-7,n], B ).

Let S be the space of all nxn complex matrices AC) with the property:

A(W) S(w) f PM A(W) d< ()

-7F

where p some stationary process in F, tr means trace, and * stands for conjugate.

Then, S P is a Hilbert space with inner product and norm given respectively by

the following expressions:

(AI(w), A2 (w)) tr A1 (W) fP(w) A2 (w) dw ; A1 (w), A2() C SV  (2)

I[Al 1) l]S  (A I() , AI( M))
I/2  (3)

Let S and Si be the sets of all matrix polynomials of the form E Ak e kw ndpi
k=l

E Ak ej kw  respectively; where {Akl is any square summable sequence of constant

k=-=

nxn matrices. It is easily seen that S CS and SC S V P c F. We will denote

by & members of the set S p. We will denote by .& members of the set Si .

Let I be the identity n-dimensional matrix. Then, I n S ; V 1i c F. Given V c F,n nl 1

it is uAl-known from the classical theory of mean square linear prediction and inter-

polation [12], that in the frequency domain both problems correspond to appropriate

projections of the identity matrix I n In particular, in the prediction problem the
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projection of !n onto the subspace S p S is sought. In the interpolation problem,

the projection of In onto the subspace S.CS is sought, instead. For given p in

F, the above projections are realized by two infima inf ep(p,.) and inf ei,

respectively, where: z P kESi

e P(p,.&) Atr -T(I n_-9,(W)) fP(w) (In--&(uj)) dw ; -S C Sp (4)

e(, =trjr (In-"))*T f( M)(In-(w))d0 ; k' C Si (5)

It is also well-known [15] that:

e (P) inf ep(p,jP) = min ep(lj,. ) = expf (27fn) -l I ' tr[-og 2r f (w)] di ; p c F

(6)

e(P) Ainf e = min ei(pl.i) = 4T2 tr Ci(w) dwJ ; p c F
.RiCS i .&-ic-, fiTrW

(7)

We now consider games on FxS and FxS, with payoff functions given respectively
* *.

by e(v,jS,) in (4), and ei(lsi) in (5). We are seeking pairs (p, ) on FxS and
p

(pi,') on FxSi, such that:

V p c F ; ep, ) < e < ep( *,.p) ; Vp C S (8)
p &P -Pp -&P- P p

Vp E F ; ei(p,) < ei(Pl,i) < eiii) ; g Si (9)

If the pairs in (8) and (9) exist, we call them solutions of the corresponding

games. We proceed with a theorem whose proof is in the appendix.
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Theorem 1

Let F he a convex and closed family of n-dimensional vector stationary processes

with spectral distribution matrices satisfying the properties stated in this section.

Let e (1j) and eI(p) be given by (6) and (7) respectively. Then, there exist unique
p

meaure * and in F, such that:

e (=) sup e (11) (10)
p p

e1 (Iji = sup eix)1)

Let *4£ S and *~ E Si be such that:

e(p;, )= e (*)
P - p p

* = ei(9))

Then, the pairs pp, ) and (ii) are the unique solutions of the games in

(8) and (9) respectively.

Theorem 1 and its proof are parallel to theorem 1 in 114]. In the latter, more

general asymptotic as well as nonasymptotic filters and smoothers are included.

According to the above theorem, to find solutions for the games in (8) and (9), it

is sufficient to search for measures that satisfy the suprema in (10) and (11).

To this point, we considered arbitrary convex and closed families F of stationary

vector processes. To find explicit solutions for the games in theorem 1, we will

adopt two specific such families. Since in the error expressions in (4) and (5), the

measure of the vector process appears through its spectral density matrix only, we

will define the two families through their spectral characteristics.

The first family we consider satisfies the general properties stated in the

beginning of this section, and it corresponds to linear contamination of a nominal
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measure P In particular, denoting by f (w) the well-known spectral density matrix

of the measure 10. we define this family in the frequency domain as follows:

(A) F f(w) : f (w) = (l-F-) f (w) + c h(w) ; w el-in]
L,s Z--0

; where C given and such that: 0 < e < 1,

fo(w) well-known positive definite Hermitian matrix,

h(w) nonnegative definite Hermitian matrix satisfying the energy

constraint: (2w) tr h(w) dw - W, for given positive W.1

The second family we consider satisfies again the general properties in the

beginning of this section, and it corresponds to fixed energy within a finite number

of subsets of the Borel field B . Specifically, this family is defined as follows:

(B) F I f() : trf f(w) dw=c. ; i=l,2,...,k, tr[ f(W) d"' = c

k

;where A i  Bw ; Vi, Ai A = i j UAiCI-Tn],

i=l
k

c > ci, and f(W) positive definite Hermitian matrix
i=l

Given two nxn spectral density matrices f (W) and f (w), define the metric

:-I -2

n

J AMM(w - X ( 2~)I; where fXi) (W); 1 < i < ni the eigerivalues of the matrix

f (w); j=l,2. Then, both families F and F are clearly convex and closed with
_ jL,C Q

respect to that metric; thus they satisfy the conditions in theorem 1. Therefore,

it is sufficient to search for the suprema sup e (p), sup e (p), sup e (1),):FL,c P pcFQ P FL,c

sup ei(p).
i EQ
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In section 3, we will solve the prediction and interp-.'.ation games for the class

FL, . In section 4, we will solve the same games for the class FQ.

3. The Solution of the Games for F

Due to the results in theorem 1, the solution of the prediction and the inter-

polation games corresponds respectively to the measures that realize the suprema of

the errors e (]i) and e.i() in (6) and (7). In this section, we are searching for thep i

above suprema on F L,; where the class F L, is given by (A) in section 2.

Given some spectral density matrix f(W) in F L, let us denote by {X.j(w)

j=l,...,n} its eigenvalues. Since, f(w) is positive definite, X.(W) > 0; V J,

V wE[-Tr,Tr]. Let us denote by {X0(W); j=l,...,n} the eigenvalues of the nominal

spectral density matrix f( ). Let us define two scalar functions on f-7,7], that

we will use later in our derivations. In particular, if {M.(w); 1 < j < n} are the

eigenvalues of the spectral density matrix f(W) in FL,c' we define:

)min(W) M min .() ; 6 [-7'ri] (12),<j <n

M0  ma AW ; C) f-TT,7t] (13)max 1<j<n

At this point we observe that for arbitrary matrix A with eigenvalues {X.}, we
J

have the known identities: tr{fog A} = togfdet Al and det A = f. ; where det denotes

determinant. If we apply the above identities to the error expression e (u) in (6),

we obtain:

eu)A &g(I I ())e (14)
e i() e (f) = 27r exp (2Trn) - 1  og i- X(w)) d(

where {L (W) ; 1 < j < n} the eigenvalues of the spectral density matrix f(w) that

corresponds to the measure p.
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For completion, we reexpress the interpolation error e.( i) in (7):
I

eii) e(f - ) = 4ir2 t{ f__-(w) d] (15)

From expression (14), we observe that the prediction error e (f) is solely a

function of the eigenvalues of the matrix f(w). The eigenvectors of f(w) do not

appear explicitly in the error expression e (f). At the same time, there are nop -

explicit statements in the description of the class F i (A), referring to the

eigenvectors of the spectral density matrices f(.). For those reasons, we will take

two extreme directions. We will first assume that the class FL, includes spectral

densities with no restrictions on the eigenvectors, besides the ones implied by the

semipositive definite requirement on the matrices h*.). Then, we will consider a

subclass F' contained in F . The subclass F' will contain only those matricesL,e L,c

f(w) in F L, that have eigenvectors identical with those of the nominal spectral

density matrix f (w). That is, the spectral density matrices in F' will have-o L,c

identical projections on the directions determined by the eigenvectors of the matrix

f (w). We observe from expression (15) that the interpolation error e (f) is, in-- o1

general, a function of both the eigenvalues and the eigenvectors of the spectral

density matrix f(w). Thus, we will find a suboptimal solution of the interpolation

game on FL,E. We will solve the prediction game for both the classes F L,c and F ', .

We first state formally the description of the class F'

(C) Fe =f : f(w) E FL,, and fw) has eigenvectors identical with those

of the matrix f(M.

We will first find the solution of the prediction game (or equivalently the

supremum of e p(f)) within the class FL,c . To do that we will use a trick. We will

solve the corresponding optimization problem within some subclass F of F L,E  Then,

we will show that the so obtained solution is sufficient, in the sense that it also
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solves the optimization problem in F L,. We will first define the subclass F and

we will prove some of its properties.

(D) F : f(w) c F d (W) > (1- 0) A (0 ) ; Vti)C [-W T ];-

f) L, "ndmin (c)>C-)max

where X (M) and Xx (w) are given by expressions (12)

and (13)

Proposition 1

The class F is nonempty, convex and closed, and it is contained in FL

Proof

i) Let f(w) be some spectral density matrix in FL,E. Thea, due to the non-

negative definite requirement on h(w), we have that the matrix f(w) -

(-f() is nonnegative definite. Let X(w) be the eigenvector of f( )

that achieves AX (w). Due to the complete freedom of the eigenvectors
max

in F L,£ there exists some f(w) in it, such that X T(')f(W)X(W) = Xmin(w).

Thus, there exists some f(w) in F L, such that:

X T(W)f(w)X(W) - (I-c)xT )f(o()X(w) = XM - (I-s) 0 () > 0
-t-0 minmax

and nonemptiness is established.
ii) Let f (1)(W) and f(2) M be in F. Let a be some constant in (0,1). Then,

[a f (1 ) + (1-a) f ()] e FL,£" Let X(M) be the eigenvector that

achieves the XAin, a f(l) + (1-0) f(2)(W) for the matrix a f (1 ) +

(1-c)f (W). Then,

min,af(1)+(l--a)f(2)(W)= XT(w)[af (1) M + (1-a)f (2) () X(w) a xTM f(1) ) X() +

+ (1-a) x TM) f(2)) X() > A min,f(l)(W) + (1-a) Aminf(2)(W) -> (l-E) AaxM
_ max

Thus, convexity has been proven. Closeness is straightforward due to the

inclusion of equality in X _(M) > (I-E) O0 ().min max



iii) Let f(j) E F. Let X(w) any vector. Then,

X-(W) f_() xM) X (w) fo() XMw)T>- m m ( > Cl- E) Xo ( ) > Cl- c)T

X T(W) X(G) - min -  max - xT() X()

Or

: ) f(w) X(w) xT Xu) M 0o() X(M)
T- (1-E) > 0 V x(M

X () X(w) xT(W) X(w) 0-

Thus, f(w) E FL, and FC FL,c-

Due to proposition 1, the class F in (D) satisfies the properties in theorem 1.

Thus, the games in (8) and (9), on FxS and FxSi respectively are equivalent to

establishing the suprema of e (f) and e,(f) on F. Since F is contained in FL,e, the

energy constraint (2r)-1 tr h(w) dw < W is also implied in F. Writing

c h(,d) = f(w) - (1-c) 1(M), and tr f(w) dcw = [ dw, we obtain the

following form of the above energy constraint:

[ ( dw < (X-0) () dw + c 2r W (16)

T = l 7r -=

The maximization of the errors e (f) and e(f) on F reduces then to two optimi-

zation problems with two inequality constraints on just the eigenvalues of the matrices

f(c). The optimization problems have unique solutions, due to theorem 1. Using the

expressions in (14) and (16), and the description of F in (D), we first state the

optimization problem for e (f) on F and its solution in a lemma.p-
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Lemma I

The supremum of e (f) on F in CD) corresponds to the solution of the following

constraint optimization problem:

sup tog I Xl(w) dw

j l

subject to:

( d w < ( f-K X (I dw + E 2 , W

X, (W) > (1-6) Xm~xo ) M V j , V WJ E [-7,-.]
j max

where X0 () is given by (13).

max
The unique solution of the above optimization problem is represented by an,* . *

n-tuple 'X (W),..., n (w)) of eigenvalues; where:1 n

I (-C) X0 M o • : (1-0)) aX M) > Y
, max max(vi ; X, ( M = X (Mo = 16 L (17)

max

and y is a constant uniquely defined.

We observe that the solution in the lemma does not involve eigenvectors at

all. Since there are no eigenvector restrictions in the class F, the implication

is that the problem is solved by any spectral density matrix whose eigenvalues are

given by (17) and whose eigenvectors are unrestricted. Thus, the uniqueness of

the solution refers to eigenvalues only. We point out the similarities of the

solution in (17) with Hosoya's solution [11], for scalar stationary processes. We

exhibit this solution graphically, in figure 1. We now present the proof of the lemma.
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Proof of Lemma 1

To find the solution of the optimization problem in lemma 1, we write the Euler-

Langrange equations and apply the Kuhn-Tucker conditions:

X (W) y-1 ji.(w) = 0 < i n

( - (1-) X0 (w)] = 0 ; 1 < i < n

where iW) ; 1 < i < n the Euler-Langrange multipliers.

From the Euler-Langrange equations we find that the optimal solution satisfies the

condition:

X ( ) = X( ) ; I < j < n

where (w) is equal to either (1-c) X0a(ti) or to a constant y such that
max

y > (i-e) A (w). The constant y, as well as the regions E and Ec on which X()max Y w

is respectively equal to (1-C) Xa (w) or to y are determined by the following
max

equation:

f ?(w) dw = (1-6)J mX (w) dw + yf dw=

Y Y

= n (1-) n X(w) dw + E 2Tr W (18)

f7r

We wish to prove that (18) has a unique solution with respect to y and E y. Let

us first define for simplicity in notation:

X 0 (wi) d = V (19)
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-1'
n (1-E) X,(W) dw + c 2W = Q (20)

Substituting expressions (19) and (20) in expression (18), we obtain:

a (y) [y - (1-E) X0  (w)) dw = Q - (1-E) V (21)
maxc

Y

It is easily shown that a(y) is monotonically nondecreasing with y, taking

values from 0 to -. Also, Q - (1-c) V > 0. Therefore, the equation in (21) is

satisfied for a unique positive y value. The proof is now complete.

We will now complete the search for the solution of the prediction game in (8)

on FL xS p, by showing that it is sufficient to place the game on FxSp instead;

where F is given by (D). We express this result in a theorem.

Theorem 2

The solution of the prediction game on FxSp, given by expression (17) in lemma

1, is also the solution of the prediction game on FL, xS ; where FLI is described

by (A).

Proof

Due to the established uniqueness of the solution on FL, xSp (by theorem 1) as

well as the solution on FxS p, It suffices to show that the prediction error e (f),

for some f in FL, - F, is bounded from above by the prediction error e p(f'), for

some f' in F. We define FL, - F such that (FL E - F)(J F = F and

(FL, C- F)/j F = *.

Let f E (F - F). Then, X (w) < (l-e) X (), and there exists at
Le min t l max

least one eigenvalue of f(w) such that it is less than (1-E) X)~ (M for some wmax
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values. Let the eigenvaiues X (w) ,.... ,k( ) ; k < n have this quality. For the

eigenvalue j() ; j < k lot us create a new eigenvalue V[(w) by replacing X (w) by

(I-) o (ti:) on those (A values where X. (M) is less than (1-) Ao (w). Let us
max 3 max

maintain the eigenvalues {X.( ) ; i > k unchanged. The so created n-tuple

(X'(C),..., X(w)) of eigenvalues clearly satisfies the following inequality (due to
1 n

the monotonicity of the logorithmic function):

!7r
Zog 1 X i(w)] dw< Zog r H XIi)] dw
Log 1=1 o i=l

By construction, any spectral density ratrix f'(w) with eigenvalues the n-tuple

is in F. Thus, the proof of the theorem is complete.

We will complete the coverage of the prediction game for this section by finding

the solution on F xS ; where the class F is given by (C). We will proceed

LE p L , i

towards that direction by first stating the properties of the class F' in a
L, i

proposition.

Proposition 2

The class F' is nonempty, convex and closed, it is contained in F and

it is such that:

f (M) E: Fi, * ;k (W) > (1-E) XO(W) W C i,1 -7r,I

Proof

The class is clearly nonempty since it contains at least f (M). It is also
-0O

trivially convex and closed and contained in FL,E . Now, since for each f(w) in

FL,, Mf ) and f (w) have the same eigenvectors, the eigenvalues of the difference

f(j) - (l-e) f(w) are given by {X1( ) - (1-C) O(M) ; 1 < i < n}. Since

-=
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f(w) - (1-c) f wi) should be nonnegative definite for every fL() in F, we

conclude then that it is necessary that X.(w) > (1-E) X0 (w) ; V i, V W e [-c, ].
I i

The proof of the proposition is now complete.

Due to proposition 2, the class F' satisfies the necessary properties in
L,c

theorem 1. Thus, the prediction game in (8) on Ft xS is equivalent to establishingLC p

the supremum of e (f) on F',. Since F is contained in F' the energy constraint
p- L, E L,E s ' enrg cosran

in expression (16) is also implied in F',. The maximization of the error ep(f) on

FL', reduces then to an optimization problem with two inequality constraints;

where one of the constraints is given by (16), and the other one is given by the

eigenvalue inequality in proposition 2. We state the above optimization problem for

e (f) on F' and its solution in a theorem.

Theorem 3

The supremum of e (f) on F in (C) corresponds to the solution of the following

optimization problem:

sup tog IT i (w)] dw
f-Tr J=l

subject to:

Jr [n X (W dw < (1-E) f [ x(td) dw + c 2Tr W

X (w) > (1-6) X () ; V J, V W C [-r,7r]

where {X () ; 1 < j < n} the eigenvalues of the matrix f±(w).

The unique solution of the above optimization problem is represented by an n-

tuple (X (w),...,A*(w)) of eigenvalues such that:suntht
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- XL) (i-E) X0 W>Y
w ; I < j < n (22)J ( y; : (1-0) XO(M)<y -

The constant y is uniquely defined and it is the same for all j values.

Proof

The proof is parallel to the proof of lemma 1. The Kuhn-Tucker conditions here

are:

Xil (W) - 1 - i(W) = 0 ; < i < n
i

i (w) [X.(w) - (-C) °(w)] = 0 ; 1 < i < n1 1 -- -
Ec

The constant y and the corresponding regions (E.,, ; 1 < i < n) where

each eigenvalue X.(W) is equal to y or larger than it are determined by the equation:

1

E [(1-) Xo(w) dw + y dw =

i l i,y Y

= ((-w) )i (w) dw + e2 W (23)

i=l fT

Defining Q as in (20) and

Vi = X(W) dw (24)

we can write expression (23) in the following form:

n n

lcy) y y - (1-E) XO(W)) dw = n Q - (-c a V) (25)

If 
i
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As in the proof of lemma 1, the monotonicity and nonnegativeness of 0(y) is

easily established. It is also true that the right hand part of (25) is positive.

Thus, the uniqueness of y that satisfies the equation in (25).

We exhibit the solution in (22) graphically, in figure 2. We will now summarize

our conclusions for the prediction game on the class FL,C, with some comments.

Comments

Since the error expression e (f) in (14) involves only the eigenvalues of the

spectral density matrix f(w), and since the description of the class F L, in (A)

does not involve eigenvectors explicitly, we may adopt several assumptions in terms

of the f(w) eigenvectors. In this section we took two extreme directions. We first

assumed that the eigenvectors are unrestricted. Then, we assumed that the eigenvectors

remain fixed for the whole class. In the first case, the solution of the prediction

game is given by theorem 2. In the second case, the solution is given by theorem 3.

The two cases can be looked upon respectively as an upper and a lower bound to the

prediction games with any restrictions on the eigenvectors. The case represented by

theorem 2 is the most robust within the linear class F L,; where any possible

restrictions on the eigenvectors are not specified. It is also the most pessimistic.

Theorem 3 represents the least robust case within the general linear model of the

class in (A). The solution of this case does not safeguard against possible perturba-

tions of the eigenvectors of the matrix h(w).

We now focus on the interpolation game on F L,ExS i . As we pointed out earlier,

the search for the solution of this game is more involved. This is so, because the

error expression ei(f) in (15) involves explicitly both the eigenvalues and the

elgenvectors of the spectral density matrix f(w). For that reason, we will create

a lower bound on e (f), that will be strictly a function of the eigenvalues of the
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matrix f(w). We will find a supremum of this lower bound on FL,E* We will search

for this supremum by going first through the class F in (D), as we did in the predic-

tion game. This supremum will provide, in general, a lower bound on the saddle value

of the interpolation game on F L,ExS i . We proceed with the following proposition.

Proposition 3

The error e i(f) in (15) is bounded from below by the function

bL(f) = 4 I2 n2[{ dw i Xl( -1 (26)

where {X() ; 1 < i < n} the eigenvalues of the spectral density matrix f(w).

The function b L(f) is strictly concave on F and F L, and it is equal to the

error ei(f) if and only if Xi(W) = () ; V i, j.

Proof

We will use the known identity tr A-1 > n2 [tr Al-I ; where A an nxn positive

definite nonsingular matrix. The above identity is satisfied with equality iff A

is the identity matrix times a constant. Applying the above expression to the error

e(f), we find:

(V = 4 tr I f (w ) dW l > 4 T 2 n2  tr 7 
1  ( ) dw]

=4 2 n2[f d ( bL(f)

7[ i=l1

with equality everywhere iff f-_ f-1 () dw is the identity matrix times a constant.

But this can only occur if all the eigenvalues of f-(w) are equal to each other.

That, of course,implies that the eigenvalues of f(w) are equal to each other. A

straightforward observation allows us to conclude that b (f) is strictly concave
L



20

in the set . thus, b is strictly concave on F and
1 L i < n; t (f) is".

We will now seek the supremum of the function b L(f) in (26) on the class F

in (D). Our approach can be formalized as a constraint optimization problem, as

in lemma 1. We present the constraint optimization problem and its solution in a

lemma.

Lemma 2

The supremum of the function b L(f) in (26) on F in (D) corresponds to the solu-

tion of the following constraint optimization problem:

TT
g n

inf 'f dw

subject to:

: [ l ) M dw < (1-E) f [ X(w dw + c 27 W

X.() > (1-) X0 (w) ; v j , Vw c [-Tr,rr]
S -- max

where Xo (w) is given by (13).
max

The unique solution of the above optimization problem is identical to the

solution (17) in lemma 1.

Proof

A unique solution exists due to the strict concavity of bL(f), and the convexity

and closeness of F. This unique solution can be found through an Euler-Langrange

formalization. The Kuhn-Tucker conditions are:

-X-2( + y + = 0 ; 1 < i n

Vi(w)[Xi(w) - (1-c) X°  (w)] = 0 ; 1 < i < n
max - -
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where p.(L.J); 1 < i < n the Euler-Langrange multipliers.

From the above conditions we obtain:

-2 02(w)]+Y o M 0; V i
(w)+ y [X(~)-. l-c ?max

and thus the result in the lemma. The uniqueness of the constant y is exactly as

in lemma 1.

We now proceed with a theorem to exhibit the sufficiency of the solution in

lemma 2, for the class F L, as well. The theorem is parallel to theorem 2 in the

prediction game.

Theorem 4

The supremum of b(f_) on F, given by lemma 2, is also the supremum of bL(f) on

F,. If X*(w) denotes the solution in lemma 2, then b (f*) b (X*) = e e *) e (f*).L- L i

Proof

As in the proof of theorem 2, we select some f in (FL, - F). For the eigen-

values X1 (W),...,X () of f such that they are less than (l-C) X () for some w
1 k max

values, we create new eigenvalues X'(w) ; I < j < k, as in the proof of theorem 2.
3

We maintain the remaining eigenvalues unchanged, and we denote the whole newly

created set of eigenvalues {X(w) ; 1 < j < n}. Then, we have 1rivially:

dw E A'- 1 (w) < dwo Ei X ,(M

Therefore, for every L in (FL,E - F), there exists some f' in F such that

bL(W) > bL (f_) The proof is now complete. bL(f*) = ef_) , because the solution

in lemma 2 gives equal eigenvalues and then (due to proposition 3) equality is

attained.
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We will complete this section with some comments on the interpolation game.

Comments

Due to the involvement of both the eigenvalues and the eigenvectors of the

spectral matrix f(w) in the interpolation error e.(f), we were unable to find the

general solution of the game in (9) on FL, xS Instead, we found a lower bound on

the saddle value of this game. The value of this lower bound is given by lemma 2

and theorem 4. It is important to point out, however, that the developed lower

bound coincides with the error e.(f) for all f in FQ, in at least one case. This

is the case where the eigenvectors of all the spectral density matrices ir FL,. are

constant (not functions of w). This corresponds to the class of spectral density

matrices with identical projections on n fixed directions. Then the lower bound

b Lf) and the error e (f) coincide for all f.

4. The Solution of the Games for FQ

In this section we consider the prediction and interpolation games on FQ xS

and FQ xSi respectively, where the F Q class is described by (B) in section 2. Due

to theorem 1, the solutions of the above games are provided by the suprema of the

errors e p(f) and e(f) in (14) and (15) respectively, on the convex and closed

class F We will use the same notation as in section 3, and we will denote by

f i (  1) ; I < i < n} the eigenvalues of the spectral density matrix f(w). We will

first analyze the prediction game. Then, we will study the interpolation game. We

first define two measures that we will use in our presentation.

Let A be some set in the Borel field B . We will denote:

m(A) : The Lebesque measure of A

(27)

1 () : The indicator function of A

A
Also, in the description of the class FQ in (B), we will denote:
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k

Ak+l =[-r".] - U A i

i~ 1 (28)

k

c k+l trj f (0 d c - Ci
fAik+li

We also use the known identity:

tr f(w) dw = f l dw; A B (29)

Due to the identity in (29), and due to the fact that the error e (f) is a

function of the eigenvalues of f() only, the maximization of e p(f) on FQ does not

involve explicitly the eigenvectors of the spectral density matrices f (w). Indeed,

the solution of the prediction game on FQxSp can be formalized as an optimization

problem, with constraints of the form as in (29). We express the constraint optimiza-

tion problem and its solution in a theorem.

Theorem 5

The supremum of e (f) on F in (B) corresponds to the solution of the following
p Q

optimization problem:

sup tog [ (w)] dw

i=l1

subject to:

f [ Xiw) d = cJ ;J1,...,k+l

where (cj, Aj) ; 1< j < k+1 the pairs given in the description of the class FQ

and in (28).



24

The unique solution of the above optimization problem is represented by an

n-tuple (X* (w),...,?n(w)) of eigenvalues, such that:

k+l

Vi; X(w) = X*(w) = n - I  Cj l A ) m- (A.) (30)

j=l

where 1 A() and m(A) are given by (27).

Proof

The exitence of a unique sciution is guaranteed by theorem 1. It is thus

sufficient to prove that:

fog [X(c)] dM tog [ 1 it(u)] dw ; v {iX ()} in FQ (31)
i=l

where X *(w) is given by (30).

The eigenvalues {X (i0 are positive. We will use the inequality between arithmetic

and geometric means for positive numbers, as well as the generalized form of -

inequality, known as Jensen's inequality. We thus obtain:

Log [ i ()] d < og [ni l x i(W dw = n tog [n j i( dw
J-7r il J.rrl

o-1 n k+l im J
= n E tog n- I E Xi(w)] dw <n 1: m(5) i ogfm ) n-i~j E %iW) d

= n :m (A) tog In 1 m'-1( A Cj} = n E tog I n.l M-1 (Aj) Cj } dw
J=l j=l

= n " togj Jl n- 1 m- 1 (Aj ) cj1 () dw .4 tog[X*(W)]in dw (32)
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The sequence of equalities and inequalities in (32) hold with strict equality every-

where, if and only if () = A*(w); V i. The proof is now complete.

We exhibit the solution in (30) graphically, in figure 3. We will complete

the coverage of the prediction game in the class F with some somments.
Q

Comments

The solution in theorem 5 implies no restrictions on the eigenvectors of the

spectral density matrices f(w) in the class FQ. Indeed, the class FQ imposes

quantiled energy restrictions only. It leaves the projections of the spectral

density matrices unrestricted. The solution in (30) gives spectra that are piece-

wise constant functions in [-rr,1if. This satisfies our intuition, since we expect

the "flatest" possible spectra, as the solution to the prediction game, for any

convex and closed class of measures. Indeed, the prediction error has entropy

characteristics.

We now consider the interpolation game on F xSi . As concluded from theorem 1,

it is equivalent to search for the supremum of the error e (f) in (15) on the class

F Q. Since the error e i(f) involves explicitly both the eigenvalues and the eigen-

vectors of the spectral density matrix f(w), we will analyze the lower bound bL(f)

in (26) instead (as we did in section 3). As in section 3, the function b (f_) is

strictly concave on F Q. We will thus search for the unique supremum of b L(f) on F

This search can be formalized as a constraint optimization problem. We state the

optimization problem and its solution in a lemma.

Lemma 3

The supremum of the function bL(f) in (26) on FQ corresponds to the solution of

the following constraint optimization problem:
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Subject to:

fM] dw= c. ; j=l,...,k+l
ij =l

where (cj, Aj) as in theorem 5.

The unique solution of the above optimization problem is identical to the

solution (30)in theorem 5. Furthermore, at this solution the values of b L(f) and

e (f) coincide.

Proof

We follow similar approach as in the proof of theorem 5. Again, since the

uniqueness of the solution is established in advance, it is sufficient to show that:

n[X*M] - 1 dw < f,[nXl() dw ; V1x M} in F (33)
f-Tr Tri=l

where X (w) the solution in theorem 5.

We will use the following inequalities on positive numbers and functions:

N N

1 > N2  a (34)

i=l iffl

f fi(x)dx >4j f(x)dx]- 2 ()(35)

The inequality in (34) represents a relationship between the arithmetic and the

harmonic mean of positive numbers. It is satisfied with equality iff a, = a ; V i.

The inequality in (35) in Jensen's inequality, where mi(A) is the Lebesque measure of
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the set A. Expression (35) is satisfied with equality iff f(x) is constant on A.

Using the inequalities in (34) and (35) we obtain:

n Xi (W dw = 1 f [( dw5.+ n 2i(w)] dw >

- i=l J= 'A. i=! I 1 i=l

2- 2 - m2 (A) (2

n a m (Aj) () d = E c (36)

j=l I fA i=l j=l

But for the solution X*(W) in theorem 5, we obtain:

Tr Tr k+l
n[X* ]- d n n- 1  c ( ) 1 dw[E cj.E EA. ()J d =

j~l j=

J= n2  c Aj (w)J d = n J [ cim-(Ai) Imi( A4 )1 2dA

,-rrj~lj=1 A" =1

From (36) and (37) we conclude directly that (33) is satisfied. Furthermore, the

inequalities in (36) are strict equalities iff ) i(w) = Xt*(w) ; V i. Thus, the left

part of (33) is attained. Finally, as in the proof of theorem 4, if fJ is some

spectral density matrix with eigenvalues Xi(w) = *(w) ; V i, we also have

ei(f*) - bL(f*). The proof is now complete.

We will conclude this section with some comments on the interpolation game on

Qi
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Comments

As in section 3, the involvement of eigenvectors in the error expression e (f)

prevented us from finding a general solution of the interpolation game on FQXSi .

Instead, we maximized a lower bound on the saddle value of the game. The supremum

of this lower bound bL(-f) is equal to the error ei(f), at the f value that satisfies

the supremum su b L(f). If the spectral density matrices in FQ have identical
-E Q

constant eigenvectors, the lower bound bL(f) coincides with the error ei(f) for all

f. Then, the solution in lemma 3 is also the solution of the interpolation game.

5. Conclusions

In this paper, we considered the prediction and interpolation problems for vector

stationary processes with ill-specified statistical structures. We modeled the

uncertainty in the statistical description of the processes through convex and closed

families of vector measures. We formalized the prediction and interpolation problems

as statistical games with saddle point solutions, and we considered two different

families of vector measures. The first such family represents a linear contamination

of a nominal measure, and it includes an energy constraint. We provided two solutions

of the prediction game within this family. One of the solutions is the most robust,

while the second solution is the least robust. They are both represented by specific

choices of the eigenvalues of spectral density matrices. Within the same family, we

analyzed a lower bound on the solution of the interpolation game, and we found the

conditions under which this lower bound is attained.

The second family of vector measures we considered is represented by fixed

energy, on a finite number of prespecified frequency quantiles. The solution of the

prediction game is then provided by identical eigenvalues such that each is piece-wise

constant. For the interpolation game, we analyzed a lower bound instead, and we found

again the conditions under which this lower bound is attained.
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All the derived solutions for the prediction game correspond to the eigenvalues

with the "flatest" possible tails. Equivalently, these solutions correspond to the

measures with the most evenly spread energy. This is intuitively satisfactory, since

the prediction error has entropy characteristics in the frequency domain, and the

most even spreading results in entropy maximization.
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dashed curve: (l-c)X 0 (w)
max

solid curve: X *(w)=X*(w);Yj

Figure 1

The Solution on FL

dashed curves:

00E) (W) (l--E)X (W)

T( -.T *1-T7

-~ ~ ~ Fgr 2 i sli uvs
Th Soui n FLF

Figure 2

The Solution on F Q
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7. Appendix

Proof of Theorem 1

We will prove the theorem through a sequence of lemmas.

Lemma A.1

Let A be an nxn symmetric and positive definite matrix.* Then,

1) f(A) -4 tr tog A

is strictly concave in A

ii) h(A) A t A-1

is strictly convex in A

Proof

Let M be the set of all nxn symmetric and positive definite matrices. Alis

convex and closed. Thus, if A 1 C M, A2 E M, then [a A1I + (1-ca) A21 C M ;V a

0 < a < 1.

To prove the lemma, it suffices to show that:

2 f (a A + (1-a) A2) 0 0; VA1 , A 2 EM, A3at

a2h (a A + (--a) A2) > 0 ; VAlt 2 E M, A 1  A2act

But, we easily obtain:

i) D OL (1-a) A2) tr-2 tog (a A1 + (1-a) A2 1

=tr }- [[at A1 + (1-ca) A] [l A, - A2]

= tr (a A 1+ (1-at) A21- (A1I- A2 1 [A1 -A 2]
n

-tr [A ~A]IT [a A + (1-ct) A2 ] 
2 [A -A2  -- ' T [aA, + (1--) A -2 C

1 2 12 1 2 ~ i 2] 2

(A.1)
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where c the ith culumn of the symmetric matrix A - A2'

Since a AI + (1-ca) A, is positive definite, so will be the matrix2

[a A1 + (1-ca) A2] Also, if A1 0 A2 some columns ci will be nonzero.

Thus, the expression in (A.1) is strictly negative.

2

92 2

ii) h (a A1 + (1-a) A2  tr - [a A1 + (1-a) A2
-

3a2 
2  3a 2  12

-tr-[ A + (I-a) A2]-2 [A - A]
Daz 1 2 1 2

= 2 tr [a A1 + (1-) A2]
- 3 [A1 - A2] [A1 - A2]

= 2 tr [A1 - A2]
T [a A1 + (1--a) A2]

- 3 [A1 - A2] (A.2)

If a A + (1-) A2 is a positive definite matrix, so is [a Al + (1-ct) A2]-

As in i), for A # A the expression in (A.2) is strictly positive.
1 2

Lemma A.2

The errors e (p) and e (P) are strictly concave in F. Thus, unique p and pIP

exist that satisfy the suprema in (10) and (11).

Proof

i) The strict concavity of e (p) is directly due to part i) of lemma A.1 and

the fact that pI c F, p2 c F - [e pi + (1-E) v2] e F ; V c: 0 < C < 1, and

f(c) = -"C f (M) + (1-) f (w).

ii) To prove the strict concavity of e1 (p), we select pI, p2 e F, and

C : 0 < c < 1. Then, [C P1 + (1-C) P2] c F, and we can write from (7):

1472 1-1 eiC( Pl + (1-C) p2) = tr f [C f () + (1-) f ("01- dw] (A.3)
.-IV
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Using the identity A-I(a) = -A-(a) 2- A(C) A- (a) for matrices and

differentiating expression (A.3) twice with respect to c, we find:

22 -

2 [47r 2 ei(E PI + (l-E) !2)

a€2

( T cit 7r i

= -2tr A-l(f B- 1 A B- 1 B- 1 + j I  B B- 1 B- ]f B-  B B-1 A7

(A.4)

where:

B Pef l()+ (-) f 2(W)

A =f [C () + (l-C) f P(2M)]-1 dw
_Tr

The terms in (A.4) are positive definite, thus the total expression is

negative.

Lemma A.3

The measures V * and p of lemma A.2 and the corresponding predictor g and
p p ~ p

interpolator g in theorem 1 satisfy respectively the games in (8) and (9).

Proof

Let us consider the error expressions ep(p, g&,) and ei(, g) given by (4) and

(5) respectively. Both ep, ( .&) and ei(P, j&) are linear in 1. Also, since F is

a closed family, the suprema sup e(p,-p), and sup e (4, Ai) exist and are attained
peF pcF

in F. For givenap in Sp and given i in S,, let:

sup ep(p, j1p) = ep( ,  )

sup ei(1, 1 i ) - ei(U, &i)
I'F F
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Then, due to lemma A.2, we obtain:

inf sup ep(P,jp) = inf ep(up, ) < inf ep(p 0) = e(p )<e
.&PeSu eF P CS jecS p p Pp P

pP (A.5)

inf sup e~(~ - i eii.&, ) < inf e (V~ ,g 0 )= e f4 < e (11)
i .giF.

But by definition:

e (U*) = sup inf ep(0,)P P pET J p'S p

(A.6)

e()= sup inf ei(ii )-pEF I i''i

Thus, from (A.5) and (A.6) we obtain:

inf sup e (u,&) < sup inf ep(u,& 1

-R - p cF P 11F Avpsp

(A.7)

inf sup et(ut) < sup inf ei(pg i )
r cS pF - eF &,eS,

But it is always true that sup inf f(x,y) < Inf sup f(x,y) for any function
x y y x

f(x,y). Due to that, expressions (A.7) must hold with equality. Thus, the games

have unique solutions given by the statement of the lemma.
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